3.75 \(\int \frac{\cosh ^2(c+d x)}{a+b \text{sech}^2(c+d x)} \, dx\)

Optimal. Leaf size=75 \[ \frac{b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{a^2 d \sqrt{a+b}}+\frac{x (a-2 b)}{2 a^2}+\frac{\sinh (c+d x) \cosh (c+d x)}{2 a d} \]

[Out]

((a - 2*b)*x)/(2*a^2) + (b^(3/2)*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(a^2*Sqrt[a + b]*d) + (Cosh[c +
 d*x]*Sinh[c + d*x])/(2*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.115501, antiderivative size = 75, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {4146, 414, 522, 206, 208} \[ \frac{b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{a^2 d \sqrt{a+b}}+\frac{x (a-2 b)}{2 a^2}+\frac{\sinh (c+d x) \cosh (c+d x)}{2 a d} \]

Antiderivative was successfully verified.

[In]

Int[Cosh[c + d*x]^2/(a + b*Sech[c + d*x]^2),x]

[Out]

((a - 2*b)*x)/(2*a^2) + (b^(3/2)*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(a^2*Sqrt[a + b]*d) + (Cosh[c +
 d*x]*Sinh[c + d*x])/(2*a*d)

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rule 414

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(b*x*(a + b*x^n)^(p + 1)*(
c + d*x^n)^(q + 1))/(a*n*(p + 1)*(b*c - a*d)), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1)*
(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d,
 n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomial
Q[a, b, c, d, n, p, q, x]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cosh ^2(c+d x)}{a+b \text{sech}^2(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1-x^2\right )^2 \left (a+b-b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{\cosh (c+d x) \sinh (c+d x)}{2 a d}+\frac{\operatorname{Subst}\left (\int \frac{a-b-b x^2}{\left (1-x^2\right ) \left (a+b-b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{2 a d}\\ &=\frac{\cosh (c+d x) \sinh (c+d x)}{2 a d}+\frac{(a-2 b) \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\tanh (c+d x)\right )}{2 a^2 d}+\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{a+b-b x^2} \, dx,x,\tanh (c+d x)\right )}{a^2 d}\\ &=\frac{(a-2 b) x}{2 a^2}+\frac{b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{a^2 \sqrt{a+b} d}+\frac{\cosh (c+d x) \sinh (c+d x)}{2 a d}\\ \end{align*}

Mathematica [A]  time = 0.227966, size = 67, normalized size = 0.89 \[ \frac{\frac{4 b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{\sqrt{a+b}}+2 (a-2 b) (c+d x)+a \sinh (2 (c+d x))}{4 a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cosh[c + d*x]^2/(a + b*Sech[c + d*x]^2),x]

[Out]

(2*(a - 2*b)*(c + d*x) + (4*b^(3/2)*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/Sqrt[a + b] + a*Sinh[2*(c +
d*x)])/(4*a^2*d)

________________________________________________________________________________________

Maple [B]  time = 0.079, size = 278, normalized size = 3.7 \begin{align*} -{\frac{1}{2\,da} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-2}}+{\frac{1}{2\,da} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}+{\frac{1}{2\,da}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-{\frac{b}{d{a}^{2}}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }+{\frac{1}{2\,d{a}^{2}}{b}^{{\frac{3}{2}}}\ln \left ( \sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}+2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}+\sqrt{a+b} \right ){\frac{1}{\sqrt{a+b}}}}-{\frac{1}{2\,d{a}^{2}}{b}^{{\frac{3}{2}}}\ln \left ( -\sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}+2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}-\sqrt{a+b} \right ){\frac{1}{\sqrt{a+b}}}}+{\frac{1}{2\,da} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-2}}+{\frac{1}{2\,da} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}-{\frac{1}{2\,da}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }+{\frac{b}{d{a}^{2}}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(d*x+c)^2/(a+b*sech(d*x+c)^2),x)

[Out]

-1/2/d/a/(tanh(1/2*d*x+1/2*c)+1)^2+1/2/d/a/(tanh(1/2*d*x+1/2*c)+1)+1/2/d/a*ln(tanh(1/2*d*x+1/2*c)+1)-1/d/a^2*l
n(tanh(1/2*d*x+1/2*c)+1)*b+1/2/d*b^(3/2)/a^2/(a+b)^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+1
/2*c)*b^(1/2)+(a+b)^(1/2))-1/2/d/a^2*b^(3/2)/(a+b)^(1/2)*ln(-(a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+
1/2*c)*b^(1/2)-(a+b)^(1/2))+1/2/d/a/(tanh(1/2*d*x+1/2*c)-1)^2+1/2/d/a/(tanh(1/2*d*x+1/2*c)-1)-1/2/d/a*ln(tanh(
1/2*d*x+1/2*c)-1)+1/d/a^2*ln(tanh(1/2*d*x+1/2*c)-1)*b

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)^2/(a+b*sech(d*x+c)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.4233, size = 2188, normalized size = 29.17 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)^2/(a+b*sech(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/8*(4*(a - 2*b)*d*x*cosh(d*x + c)^2 + a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh(d*x + c
)^4 + 2*(2*(a - 2*b)*d*x + 3*a*cosh(d*x + c)^2)*sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sin
h(d*x + c) + b*sinh(d*x + c)^2)*sqrt(b/(a + b))*log((a^2*cosh(d*x + c)^4 + 4*a^2*cosh(d*x + c)*sinh(d*x + c)^3
 + a^2*sinh(d*x + c)^4 + 2*(a^2 + 2*a*b)*cosh(d*x + c)^2 + 2*(3*a^2*cosh(d*x + c)^2 + a^2 + 2*a*b)*sinh(d*x +
c)^2 + a^2 + 8*a*b + 8*b^2 + 4*(a^2*cosh(d*x + c)^3 + (a^2 + 2*a*b)*cosh(d*x + c))*sinh(d*x + c) - 4*((a^2 + a
*b)*cosh(d*x + c)^2 + 2*(a^2 + a*b)*cosh(d*x + c)*sinh(d*x + c) + (a^2 + a*b)*sinh(d*x + c)^2 + a^2 + 3*a*b +
2*b^2)*sqrt(b/(a + b)))/(a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh(d*x + c)^4 + 2*(a + 2*
b)*cosh(d*x + c)^2 + 2*(3*a*cosh(d*x + c)^2 + a + 2*b)*sinh(d*x + c)^2 + 4*(a*cosh(d*x + c)^3 + (a + 2*b)*cosh
(d*x + c))*sinh(d*x + c) + a)) + 4*(2*(a - 2*b)*d*x*cosh(d*x + c) + a*cosh(d*x + c)^3)*sinh(d*x + c) - a)/(a^2
*d*cosh(d*x + c)^2 + 2*a^2*d*cosh(d*x + c)*sinh(d*x + c) + a^2*d*sinh(d*x + c)^2), 1/8*(4*(a - 2*b)*d*x*cosh(d
*x + c)^2 + a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh(d*x + c)^4 + 2*(2*(a - 2*b)*d*x + 3
*a*cosh(d*x + c)^2)*sinh(d*x + c)^2 + 8*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)
^2)*sqrt(-b/(a + b))*arctan(1/2*(a*cosh(d*x + c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a +
 2*b)*sqrt(-b/(a + b))/b) + 4*(2*(a - 2*b)*d*x*cosh(d*x + c) + a*cosh(d*x + c)^3)*sinh(d*x + c) - a)/(a^2*d*co
sh(d*x + c)^2 + 2*a^2*d*cosh(d*x + c)*sinh(d*x + c) + a^2*d*sinh(d*x + c)^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cosh ^{2}{\left (c + d x \right )}}{a + b \operatorname{sech}^{2}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)**2/(a+b*sech(d*x+c)**2),x)

[Out]

Integral(cosh(c + d*x)**2/(a + b*sech(c + d*x)**2), x)

________________________________________________________________________________________

Giac [B]  time = 1.18639, size = 178, normalized size = 2.37 \begin{align*} \frac{b^{2} \arctan \left (\frac{a e^{\left (2 \, d x + 2 \, c\right )} + a + 2 \, b}{2 \, \sqrt{-a b - b^{2}}}\right )}{\sqrt{-a b - b^{2}} a^{2} d} + \frac{{\left (d x + c\right )}{\left (a - 2 \, b\right )}}{2 \, a^{2} d} + \frac{e^{\left (2 \, d x + 2 \, c\right )}}{8 \, a d} - \frac{{\left (2 \, a e^{\left (2 \, d x + 2 \, c\right )} - 4 \, b e^{\left (2 \, d x + 2 \, c\right )} + a\right )} e^{\left (-2 \, d x - 2 \, c\right )}}{8 \, a^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)^2/(a+b*sech(d*x+c)^2),x, algorithm="giac")

[Out]

b^2*arctan(1/2*(a*e^(2*d*x + 2*c) + a + 2*b)/sqrt(-a*b - b^2))/(sqrt(-a*b - b^2)*a^2*d) + 1/2*(d*x + c)*(a - 2
*b)/(a^2*d) + 1/8*e^(2*d*x + 2*c)/(a*d) - 1/8*(2*a*e^(2*d*x + 2*c) - 4*b*e^(2*d*x + 2*c) + a)*e^(-2*d*x - 2*c)
/(a^2*d)